Poincare return mapping for models of elliptic neurons
نویسندگان
چکیده
منابع مشابه
Poincare Return times as Universal Sequences
Let (X, 36, m) be a probability space and let x be any invertible measure-preserving transformation of X. Given A, Bs 08, the Poincare return time sequence is the sequence of whole numbers n(A,B) = (neZ: m(A n zB) > 0). There is also a related point return time sequence, given for xeX and A €08 by n(x,A) = (neZ: xxsA). A Poincare return time sequence is the democratic version of the point retur...
متن کاملthe application of multivariate probit models for conditional claim-types (the case study of iranian car insurance industry)
هدف اصلی نرخ گذاری بیمه ای تعیین نرخ عادلانه و منطقی از دیدگاه بیمه گر و بیمه گذار است. تعین نرخ یکی از مهم ترین مسایلی است که شرکتهای بیمه با آن روبرو هستند، زیرا تعیین نرخ اصلی ترین عامل در رقابت بین شرکتها است. برای تعیین حق بیمه ابتدا می باید مقدار مورد انتظار ادعای خسارت برای هر قرارداد بیمه را برآورد کرد. روش عمومی مدل سازی خسارتهای عملیاتی در نظر گرفتن تواتر و شدت خسارتها می باشد. اگر شر...
15 صفحه اولa study on thermodynamic models for simulation of 1,3 butadiene purification columns
attempts have been made to study the thermodynamic behavior of 1,3 butadiene purification columns with the aim of retrofitting those columns to more energy efficient separation schemes. 1,3 butadiene is purified in two columns in series through being separated from methyl acetylene and 1,2 butadiene in the first and second column respectively. comparisons have been made among different therm...
Return mapping for nonsmooth and multiscale elastoplasticity
We present a semi-implicit return mapping algorithm for integrating generic nonsmooth elastoplastic models. The semi-implicit nature of the algorithm stems from ‘‘freezing” the plastic internal variables at their previous state, followed by implicitly integrating the stresses and plastic multiplier. The plastic internal variables are incrementally updated once convergence is achieved (a posteri...
متن کاملInvariant Tori of the Poincare Return Map as Solutions of Functional Difference Equations*
Functional difference equations characterize the invariant surfaces of the Poincark return map of a general Hamiltonian system. Two different functional equations are derived. The first is analogous to the Hamilton-Jacobi equation and the second is a generalization of Moser’s equation. Some properties of the equations, and schemes for solving them numerically, are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Neuroscience
سال: 2010
ISSN: 1662-453X
DOI: 10.3389/conf.fnins.2010.04.00088